Automated Extraction of the Archaeological Tops of Qanat Shafts from VHR Imagery in Google Earth

نویسندگان

  • Lei Luo
  • Xinyuan Wang
  • Huadong Guo
  • Chuansheng Liu
  • Jie Liu
  • Li Li
  • Xiaocui Du
  • Guoquan Qian
چکیده

Qanats in northern Xinjiang of China provide valuable information for agriculturists and anthropologists who seek fundamental understanding of the distribution of qanat water supply systems with regard to water resource utilization, the development of oasis agriculture, and eventually climate change. Only the tops of qanat shafts (TQSs), indicating the course of the qanats, can be observed from space, and their circular archaeological traces can also be seen in very high resolution imagery in Google Earth. The small size of the TQSs, vast search regions, and degraded features make manually extracting them from remote sensing images difficult and costly. This paper proposes an automated TQS extraction method that adopts mathematical morphological processing methods before an edge detecting module is used in the circular Hough transform approach. The accuracy OPEN ACCESS Remote Sens. 2014, 6 11957 assessment criteria for the proposed method include: (i) extraction percentage (E) = 95.9%, branch factor (B) = 0 and quality percentage (Q) = 95.9% in Site 1; and (ii) extraction percentage (E) = 83.4%, branch factor (B) = 0.058 and quality percentage (Q) = 79.5% in Site 2. Compared with the standard circular Hough transform, the quality percentages (Q) of our proposed method were improved to 95.9% and 79.5% from 86.3% and 65.8% in test sites 1 and 2, respectively. The results demonstrate that wide-area discovery and mapping can be performed much more effectively based on our proposed method.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

VHR Semantic Labeling by Random Forest Classification and Fusion of Spectral and Spatial Features on Google Earth Engine

Semantic labeling is an active field in remote sensing applications. Although handling high detailed objects in Very High Resolution (VHR) optical image and VHR Digital Surface Model (DSM) is a challenging task, it can improve the accuracy of semantic labeling methods. In this paper, a semantic labeling method is proposed by fusion of optical and normalized DSM data. Spectral and spatial featur...

متن کامل

Development of an Automatic Land Use Extraction System in Urban Areas using VHR Aerial Imagery and GIS Vector Data

Lack of detailed land use (LU) information and efficient data collection methods have made the modeling of urban systems difficult. This study aims to develop a novel hierarchical rule-based LU extraction framework using geographic vector and remotely sensed (RS) data, in order to extract detailed subzonal LU information, residential LU in this study. The LU extraction system is developed to ex...

متن کامل

Mapping Above-Ground Biomass in a Tropical Forest in Cambodia Using Canopy Textures Derived from Google Earth

This study develops a modelling framework for utilizing very high-resolution (VHR) aerial imagery for monitoring stocks of above-ground biomass (AGB) in a tropical forest in Southeast Asia. Three different texture-based methods (grey level co-occurrence metric (GLCM), Gabor wavelets and Fourier-based textural ordination (FOTO)) were used in conjunction with two different machine learning (ML)-b...

متن کامل

Optical Remote Sensing Potentials for Looting Detection

Looting of archaeological sites is illegal and considered a major anthropogenic threat for cultural heritage, entailing undesirable and irreversible damage at several levels, such as landscape disturbance, heritage destruction, and adverse social impact. In recent years, the employment of remote sensing technologies using ground-based and/or space-based sensors has assisted in dealing with this...

متن کامل

Advanced Methods For Building Information Extraction From Very High Resolution SAR Data To Support Emergency Response

Rapid damage assessment after natural disasters (e.g. earthquakes, floods) and violent conflicts (e.g. war-related destruction) is crucial for initiating effective emergency response actions. Remote sensing satellites equipped with multispectral and Synthetic Aperture Radar (SAR) imaging sensors can provide vital information due to their ability to map affected areas of interest with high geome...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Remote Sensing

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2014